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4901. Define new coordinate variables by

X =
√

3x − y,

Y = x +
√

3y.

The lines x+
√

3y = 0 and
√

3x−y, which give the
(X, Y ) axes, are perpendicular, and are angled at
30° clockwise to the (x, y) axes.
So, the curve is y = sin x, rotated by 30° clockwise
around the origin. It is also enlarged by factor 1

2 ,
because 2 is the Pythagorean sum of 1 and

√
3:

x

y

4902. Let A have coordinates (x, y) and let the angle of
projection be ϕ. Quoting the standard equation of
the trajectory,

y = x tan ϕ − gx2

2u2 (tan2 ϕ + 1).

For the minimum launch speed, this equation,
thought of as a quadratic in tan ϕ, must have
∆ = 0:

x2 + 4gx2

2u2

(
gx2

2u2 + y

)
= 0.

Dividing through by x2,

1 + 4 g

2u2

(
gx2

2u2 + y

)
= 0

=⇒ u4 − 2gyu2 − g2x2 = 0

=⇒ u2 = 2gy ±
√

4g2y2 + 4g2x2

2
≡
(

y ±
√

y2 + x2
)

.

We reject the −ve root, for which u2 < 0, giving

u2 = g
(

y +
√

y2 + x2
)

.

The solution for tan ϕ is then

tan ϕ = x

2 · gx2

2u2

≡ u2

gx

= y +
√

y2 + x2

x

≡ y

x
+
√(y

x

)2
+ 1.

Let the angle between #   „

OA and the vertical be 2θ,
so that

cot 2θ = y

x
.

Substituting this in,

tan ϕ = cot 2θ +
√

cot2 2θ + 1
= cot 2θ + cosec 2θ

≡ cos 2θ + 1
sin 2θ

≡ 2 cos2 θ

2 sin θ cos θ

≡ cot θ.

Since tan ϕ = cot θ, we know that θ + ϕ = π/2,
which puts projection along the angle bisector of
#   „

OA and the vertical.

4903. The equations are symmetrical in y = x. The sps
of the first curve are at (0, 0) and (±1, −1). Each
quartic has even symmetry. So, the graphs, with
the line y = x, are

x

y

The location of the sps guarantees that all of the
intersections lie on the line y = x. Solving for
these,

x4 − 2x2 = x

=⇒ x(x3 − 2x − 1) = 0
=⇒ x(x + 1)(x2 − x − 1) = 0

=⇒ x = 0, −1, 1±
√

5
2 .

The y values are equal to these.

4904. (a) Since the rate of departure is zero prior to t0
and subsequently large, we can assume that t0
is the time at which the event finishes.
Whatever the value of k, the maximum rate
of departure is at t = t0; k then controls how
quickly the rate drops off. A large value of k

means that the rate drops off quickly, so that
the crowd will take a long time to disperse.

(b) For the model to be consistent, the total area
under the graph must equal the initial size of
the crowd, i.e. everyone must leave eventually.
Algebraically, this is

P0 =
∫ ∞

t0

N

1 + k(t − t0)2 dt.
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Let tan u =
√

k(t − t0), so sec2 u du =
√

k dt.
The new limits are u = 0, π

2 . This gives

P0 = N√
k

∫ π
2

0

1
1 + tan2 u

sec2 u du

≡ N√
k

∫ π
2

0
1 du

≡ N√
k

[
u
]π

2

0

≡ Nπ

2
√

k

Rearranging this, N = 2P0
√

k

π
, as required.

(c) From the above, the integral of dP
dt is

− N√
k

u + c.

The constant of integration is P0. Using the
value of N found above, the number of people
present, for t ≥ t0, is

P = P0 − 2P0
√

k

π
√

k
u

= P0
(
1 − 2

π arctan
√

k(t − t0)
)
.

The graph of P against t is

t

P

P0

t0

4905. The triple-angle identities, which can be proved
using compound- and double-angle identities, are

sin 3θ = 3 sin θ − 4 sin3 θ,

cos 3θ = 4 cos3 θ − 3 cos θ.

So, the lhs is

sin 3θ

cos θ
+ cos 3θ

sin θ

≡ 3 sin θ − 4 sin3 θ

cos θ
+ 4 cos3 θ − 3 cos θ

sin θ

≡ 3 sin2 θ − 4 sin4 θ + 4 cos4 θ − 3 cos2 θ

sin θ cos θ
.

The numerator of the lhs is

3 sin2 θ(1 − sin2 θ) − sin4 θ

− 3 cos2 θ(1 − cos2 θ) + cos4 θ

≡ cos4 θ − sin4 θ

≡ (cos2 θ − sin2 θ)(cos2 θ + sin2 θ)
≡ cos 2θ.

The denominator of the lhs is 1
2 sin 2θ. So,

lhs = cos 2θ
1
2 sin 2θ

≡ cot 2θ, as required.

4906. Consider the boundary equation. For the lhs
to be zero, at least one of the expressions must
be zero. Each expression is a difference of two
squares, which gives a set of six lines. These form
a stellated regular hexagon.
The origin satisfies the inequality. And crossing
any single boundary equation causes a sign change
in the lhs. Hence, the successful regions form a
chequerboard pattern:

x

y

4907. Since f(p) = 0, we know that f(x) has a factor of
(x − p). Taking this factor out, what remains is
some polynomial f1(x):

f(x) = (x − p) f1(x).

Differentiating by the product rule,

f ′(x) = f1(x) + (x − p) f ′
1(x).

Substituting x = p, we know that the lhs is
zero and also that the second term on the rhs
is zero. So, the first term on the rhs is also zero:
f1(p) = 0. Hence, by the factor theorem, f1(x)
has a factor of (x − p). Substituting this back into
f(x) = (x − p) f1(x), we now know that f(x) has a
factor of (x − p)2.
We can repeat the argument with

f ′′(x) = f2(x) − (x − p) f ′
2(x).

Substituting x = p shows that f2(x) has a factor
of (x − p), so f1(x) has a factor of (x − p)2, so f(x)
has a factor of (x − p)3.
We apply this argument n + 1 times, once for f
and n times for its derivatives. Each application
produces a new factor of (x − p) in f(x). So, f(x)
has a factor of (x − p)n+1. qed.
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4908. Centre the unit circle at O and the second largest
circle at (2/5, 0). We need to find the centre (a, b)
of the circle of radius 3/8. This lies at a distance
of 5/8 from the origin and 3/8 + 3/5 = 39/40 from
(2/5, 0). So,

a2 + b2 = 25
64 ,(

a − 2
5
)2 + b2 = 1521

1600 .

Subtracting these,

a2 −
(
a − 2

5
)2 = 25

64 − 1521
1600

=⇒ a = − 1
2 .

This gives b = 3
8 . The scenario is

x

y

Let the centre of the smallest circle be (p, q). This
lies at a distance 1 − r from the origin, so

p2 + q2 = (1 − r)2

=⇒ p2 + q2 = 1 − 2r + r2. 1

The distance from (2/5, 0) gives(
p − 2

5
)2 + q2 =

( 3
5 + r)2,

=⇒ p2 − 4
5 p + 4

25 + q2 = 9
25 + 6

5 r + r2

=⇒ p2 − 4
5 p + q2 = 1

5 + 6
5 r + r2. 2

The distance from (−1/2, 3/8) gives(
p + 1

2
)2 +

(
q − 3

8
)2 =

( 3
8 + r)2. 3

Subtracting 2 from 1 ,
4
5 p = 4

5 − 16
5 r

=⇒ p = 1 − 4r.

Substituting this into 1 ,

(1 − 4r)2 + q2 = 1 − 2r + r2

=⇒ 1 − 8r + 16r2 + q2 = 1 − 2r + r2

=⇒ q2 = 6r − 15r2

∴ q =
√

6r − 15r2.

And the same into 3 ,( 3
2 − 4r)2 +

(√
6r − 15r2 − 3

8

)2
=
( 3

8 + r)2

=⇒ 9r +
√

6r − 15r2 = 3
=⇒ r = 1

4 .

Nota Bene

This is a case of Descartes’ theorem. The theorem
states that, in this problem, the radii are linked by(

1
r1

+ 1
r2

+ 1
r3

− 1
r4

)2
= 2

(
1
r2

1
+ 1

r2
2

+ 1
r2

3
+ 1

r2
4

)
With r2 = 3

8 , r3 = 3
5 and r4 = 1, we get r1 = 1

4
or 3

8 . The former solves the problem as set. The
latter corresponds to the following scenario:

x

y

4909. Writing this longhand, we have

1
(x − 1)2 − 1

(x − 2)2 + 1
(x − 3)2 − ...

+ (−1)n+1 1
(x − n)2 = 0.

Consider the graph y = lhs. Each of the terms
generates a double asymptote at x = r. So, there
are n double asymptotes at x = 1, 2, ..., n.

Consider the graph near an asymptote: x → r±.
In this limit, the term generating the asymptote
at x = r dominates all others. Hence,

• if r is odd, y → ∞,
• if r is even, y → −∞.

So, between each successive vertical asymptote,
the y value of the graph must change sign. Hence,
since there are no other discontinuities, there must
be at least one root between each successive pair
of asymptotes.

y

Since there are n asymptotes, there must be at
least n − 1 roots, as required.



w
w

w
.g

il
es

ha
yt

er
.c

om
/f

iv
et

ho
us

an
dq

ue
st

io
ns

.a
sp

fe
ed

ba
ck

:
gi

le
s.

ha
yt

er
@

w
es

tm
in

st
er

.o
rg

.u
k

v1
w

w
w

.gileshayter.com
/fivethousandquestions.asp

feedback:
giles.hayter@

w
estm

inster.org.uk

v1

4910. (a) Place A and B at (∓0.3, 0), and place the ring
at (x, y). The total distance to A and B is

d =
√

(x + 0.3)2 + y2 +
√

(x − 0.3)2 + y2.

On the ellipse,

y2 = 4
25 − 16

25 x2.

Substituting this in,

d =
√

1
100 (5 + 6x)2 +

√
1

100 (5 − 6x)2

= 1
10 (5 + 6x) + 1

10 (5 − 6x)
= 1.

So, on the ellipse, the total distance to A and
B is 1. This ellipse is, therefore, the location
of a ring threaded on a taut string of length 1.

(b) The ring’s velocity must be tangential to the
ellipse. To find this direction, we differentiate
implicitly:

32x + 50y
dy

dx
= 0

=⇒ dy

dx
= −16x

25y
.

At the initial position, which is (−0.3, −0.32),
the gradient of the ellipse is

m = − 16 · −0.3
25 · −0.32 = −3

5 .

So, the angle of inclination of the tangent in
the initial position is α = arctan 3

5 .
Giving this as a direction in the usual sense
(in this case anticlockwise from the horizontal
from A to B), it is −α or 2π − α. From this
value, the direction goes to zero at the nadir,
and then to α just prior to turning below B.
After the turn below B, the direction is π + α.
This goes to π at the nadir, and then to π − α

just before return to the initial position.
The α boundaries are not attainable, because
the velocity drops to zero as the ring turns,
rendering direction meaningless. So, with α

defined as above, the set of possible values of
the direction of the velocity is

[0, α) ∪ (π − α, π + α) ∪ (2π − α, 2π).

4911. Let u = ln x. This gives du = 1
x dx, which can be

written dx = eu du. Enacting the substitution,∫
sin(ln x) dx =

∫
eu sin u du.

Call this I. For the tabular integration method,

Signs Derivatives Integrals
+ eu sin u

− eu − cos u

+ eu − sin u

This gives

I = −eu cos u + eu sin u − I

=⇒ I = 1
2 eu(sin u − cos u).

So, the full result is∫
sin(ln x) dx

= 1
2 eln x

(
sin(ln x) − cos(ln x)

)
+ c

= 1
2 x
(
sin(ln x) − cos(ln x)

)
+ c.

4912. We need a and b such that(
a + b

√
2
)3 = 38752 + 28310

√
2.

Expanding and equating coefficients, this is

a3 + 6ab2 = 38752,

3a2b + 2b3 = 28310.

Rearranging the second equation,

a =
√

28310 − 2b3

3b
.

So, we need to solve(
28310 − 2b3

3b

) 3
2

+ 6
(

28310 − 2b3

3b

) 1
2

b2 = 38752.

Multiplying by (3b) 3
2 ,(

28310 − 2b3) 3
2 + 18

(
28310 − 2b3) 1

2 b3

− 38752(3b) 3
2 = 0.

We are looking for an integer solution, so can use a
sign change method. Notating the above f(b) = 0,
we evaluate at intervals of 10. The expression f(b)
is undefined for b < 0 and for b ≥ 30.

b 0 10 20
f(b) 4.8 × 106 8.2 × 105 −6.7 × 105

Checking the integers between 10 and 20, we see
that f(19) = 0. This, in turn, gives a = −16. So,

−16 + 19
√

2 = 3
√

38752 + 28310
√

2.

4913. Setting up x and y axis and labelling a length and
various points, the scenario is

x

y

R

P

Q
a
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Let the octagon have radius 1, so that R is at (1, 0).
The gradient of PR is tan 67.5° = 1 +

√
2. So, the

equation of line PR is

y =
(
1 +

√
2
)
(x − 1).

The coordinates of Q are(
a,
(
1 +

√
2
)
(a − 1)

)
.

The height of the triangle is therefore

h = 1 −
(
1 +

√
2
)
(a − 1)

≡ 2 +
√

2 −
(
1 +

√
2
)
a.

So, the area of the triangle is

A△ =
(
2 +

√
2
)
a −

(
1 +

√
2
)
a2.

To optimise this, we set the derivative to zero:

dA

da
=
(
2 +

√
2
)

−
(
2 + 2

√
2
)
a = 0

=⇒ a =
√

2
2 .

This is point P . We have proved that, anywhere on
the line PR (including on the dotted extension in
the diagram), the area is maximised at P . Hence,
we have no need of checking vertices on the edge
between (0, −1) and P . The area of the triangle
is maximised when its vertices coincide with those
of the octagon.

Nota Bene

The value tan 67.5° = 1 +
√

2 can be derived from
the double-angle formula

tan 2θ = 2 tan θ

1 − tan2 θ
.

Set θ = 67.5°. Then tan 2θ = tan 135° = −1. This
gives

tan2 67.5° − 1 = 2 tan 67.5°
=⇒ tan2 67.5° − 2 tan 67.5° − 1 = 0.

Taking the positive root in the quadratic formula
gives tan 67.5° = 1 +

√
2.

4914. At x = 0, the curve y = cos x can be approximated
with a unit circle. Hence, the radius of curvature
at x = 0 is 1. The same applies at x = π.

y

π

4915. At the point of self-intersection,

ln s cos s = ln t cos t,

− ln s sin s = − ln t sin t.

Dividing these equations, tan s = tan t. We know
that s ̸= t, so, assuming s to be the smaller,
s + π = t. Substituting this in,

ln s cos s = ln(s + π)(cos s + π)
=⇒ ln s = − ln(s + π)
=⇒ ln s + ln(s + π) = 0
=⇒ ln

(
s(s + π)

)
= 0

=⇒ s2 + πs − 1 = 0

=⇒ s = −π ±
√

π2 + 4
2 .

The negative root gives s ̸∈ [0, 2π). So,

s = −π +
√

π2 + 4
2 .

Adding π to this, the parameters are

s, t =
√

π2 + 4 ∓ π

2 , as required.

4916. The second derivative h′′(x) is a quadratic. Since
it has roots at x = a and x = b, it is symmetrical
around the midpoint of the two. So, the following
holds for all x ∈ R:

h′′
(

a + b

2 − x

)
= h′′

(
a + b

2 + x

)
.

We integrate this by the reverse chain rule, using
a single constant of integration on the rhs:

− h′
(

a + b

2 − x

)
= h′

(
a + b

2 + x

)
+ c.

Substituting x = b − a

2 ,

− h′ (a) = h′ (b) + c.

We are told that h′(a) + h′(b) = 0, so the constant
c = 0. Integrating again, the following holds for
all x ∈ R:

h
(

a + b

2 − x

)
= h

(
a + b

2 + x

)
+ d.

Using the same substitution, d = 0. Hence, the
required result holds for all x ∈ R:

h
(

a + b

2 − x

)
= h

(
a + b

2 + x

)
.
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4917. The tangent at x = p is y = 2px − p2. Setting
y = 0, we get 2px = p2, so the x axis intercept Q

of the tangent is at x = p
2 . Calculating the squared

distance to P :

|PQ|2 =
(
p − p

2
)2 + p4 = 1

4 p2 + p4.

Since tangents to a point are the same length, this
is equal to

(
1 − p

2
)2. So,

1
4 p2 + p4 = 1 − p + 1

4 p2

=⇒ p4 + p − 1 = 0.

The Newton-Raphson iteration is

pn+1 = pn − p4
n + pn − 1
4p3

n + 1 .

Running this with p0 = 1, we get p1 = 0.8, then
pn → 0.72449. This suggests p = 0.7245 to 4sf.
Verifying the root with a sign change, we define
f(p) = p4 + p − 1:

f(0.72445) = −0.000105... < 0,

f(0.72455) = 0.000146 > 0.

So, we can confirm p = 0.7245 to 4sf.

4918. Parametrising the unit circle with the usual angle
θ, the average value A is given by

A = 1
2π

∫ θ=2π

θ=0
cos2 θ sin2 θ dθ.

Using two double-angle formulae,

A = 1
8π

∫ 2π

0
sin2 2θ dθ

= 1
16π

∫ 2π

0
1 − cos 4θ dθ

= 1
16π

[
θ − 1

4 sin 4θ
]2π

0

= 1
16π × 2π

= 1
8 , as required.

4919. (a) Taking out a factor of 1
n2 ,

I = 1
n2

∫
nxn−1 · n ln x dx.

Then, using a log rule,

I = 1
n2

∫
nxn−1 ln(xn) dx.

(b) Since nxn−1 is the derivative of the inside xn,
we can integrate by inspection (by the reverse
chain rule). The result is F(xn) + c, in which
F(x) = x ln x − x:

I = 1
n2

(
xn ln(xn) − xn

)
+ c

≡ xn

n2

(
ln(xn) − 1

)
+ c

≡ xn

n2 (n ln x − 1) + c, as required.

4920. The equation of the normal at x = p is

y − p2 = − 1
2p (x − p)

=⇒ y = − 1
2p x + p2 + 1

2 .

For intersections with the curve,

x2 = − 1
2p x + p2 + 1

2

=⇒ x2 + 1
2p x − p2 − 1

2 = 0
=⇒ 2px2 + x − 2p3 − p = 0.

Factorising,

(x − p)(2px + 2p2 + 1) = 0.

The first factor is the original point
(
p, p2). The

latter gives the re-intersection at

2px + 2p2 + 1 = 0
=⇒ x = p + 1

2p .

At this point, the y coordinate is

y =
(

p + 1
2p

)2

≡ p2 + 1 + 1
4p2 .

For the range of this expression, we look for sps:

2p − 1
2p3 = 0

=⇒ p = ±
√

2
2 .

All terms are positive in y = p2 + 1 + 1
4p2 , so these

must be global minima. The y value at these sps
is y = 2. Hence, the normal re-intersects the curve
at y ≥ 2, as required.

4921. We multiply top/bottom by
(

1 − 2 1
4 + 2 1

2 − 2 3
4

)
.

This gives

1
1 + 4

√
2

=

(
1 − 2 1

4 + 2 1
2 − 2 3

4

)
(

1 + 2 1
4

)(
1 − 2 1

4 + 2 1
2 − 2 3

4

)
= 1 − 2 1

4 + 2 1
2 − 2 3

4

−1
= 2 3

4 − 2 1
2 + 2 1

4 − 1.

Nota Bene

The choice as to what to multiply by here is due
to the product/factorisation(

1 + x
)(

1 − x + x2 − x3) ≡ 1 − x4.

Equivalent results allow for rationalisation of the
denominator of

(
a + b n

√
c
)−1 for any n ∈ N.
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4922. Since 2n is even, each triangle is paired with one
opposite it. The bases of such a pair are parallel
lines of the same length l; the distance between
them is the midpoint-to-midpoint diameter of the
polygon d:

l l

h d − h

The total area shaded is

Apair = 1
2 lh + 1

2 l(d − h)
≡ 1

2 ld.

This is independent of the position of the central
point. So, moving it does not affect the total area
shaded. Consider moving it to the middle:

The result clearly holds above. So, irrespective
of the positioning of the central point, half of the
polygon is shaded. qed.

4923. The probability that there is at least one heart is

1 −
39C4
52C4

= 0.69618...

Hence, the expectation of the presence of a heart
in the hand, with 1 as presence and 0 as absence, is
0.69618. This is the same for all the suits. Hence,
the total expectation is 4 × 0.69618 ≈ 2.785.

Nota Bene

This can be verified by brute force, calculating the
probabilities of {1, 2, 3, 4} suits present. This is a
good but long and tricky exercise in probability.

4924. The relation factorises as follows:

x3 − x2y2 − xy + y3 = 0
=⇒

(
x2 − y

)(
x − y2) = 0.

So, the locus of points is a pair of symmetrical
intersecting parabolae: y = x2 and x = y2.

x

y

4925. There are 20! ways in which the numbers can be
placed. An icosahedron has 12 vertices. For each
choice of vertex, there are 5! ways of arranging the
numbers 1, 2, 3, 4, 5 around it. There are then 15!
ways of arranging the other 15 numbers. This gives
the probability as

p = 12 × 5! × 15!
20! = 1

1292 .

Alternative Method

Place 1 wlog:

Consider the placement of 2. There are nine faces
which share a vertex with 1, of which three share
an edge. So, there are two cases, with probability
3

19 and 6
19 :

1 1 and 2 share an edge.

In this case, there remain two vertices to
choose from. The probability of success via
this route is

p1 = 1 · 3
19 · 6

18 · 2
17 · 1

16 = 1
2584 .

2 1 and 2 share a vertex, but no edge:

In this case, the vertex is chosen. So, the
probability of success via this route is

p2 = 1 · 6
19 · 3

18 · 2
17 · 1

16 = 1
2584 .

The total probability of success is

p1 + p2 = 2
2584 = 1

1292 .

4926. (a) The situation, with subsequent lines added, is

x

y

r

(d, r)

d
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(b) The dashed line L1 has equation y = r
d x.

(c) The dotted line L2 has equation y = − d
r (x−d).

(d) Substituting for y,

(x − d)2 +
(
− d

r (x − d) − r
)2 − r2 = 0.

Let X = x − d. Getting rid of the minus signs
in the second term (they are squared),

X2 +
(

d

r
X + r

)2
− r2 = 0

=⇒ X2 + d2

r2 X2 + 2dX = 0

=⇒
(

1 + d2

r2

)
X2 + 2dX = 0.

So, either X = 0, which is the original point
of intersection (d, 0), or(

1 + d2

r2

)
X + 2d = 0

=⇒ X = − 2d

1 + d2

r2

≡ − 2dr2

d2 + r2 .

The x coordinate of the second point is

x = d − 2dr2

d2 + r2

≡ d(d2 − r2)
d2 + r2 .

On L2, the corresponding y coordinate is

y = −d

r
· − 2dr2

d2 + r2

≡ 2d2r

d2 + r2 .

The coordinates are
(

d
(
d2 − r2)
d2 + r2 ,

2d2r

d2 + r2

)
.

(e) The distance to the origin is

d1 = d

d2 + r2

√
(d2 − r2)2 + 4d2r2

≡ d

d2 + r2

√
d4 − 2d2r2 + r4 + 2d2r2

≡ d

d2 + r2

√
d4 + 2d2r2 + r4

≡ d

d2 + r2

√
(d2 + r2)2

≡ d.

So, the lengths of the tangents from a point to
a circle are the same.

Nota Bene

This is certainly not the easiest way to prove this
result, which is obvious by symmetry/congruency
of triangles. However, it is often a good exercise to
prove an obvious result by non-obvious means, not
least because it is rather satisfying when, things
having started to look rather complicated, they
then go ping!

4927. (a) Differentiating by the product rule,
dx

dt
= sin t + t cos t.

The parametric integration formula is

A =
∫ t2

t1

y
dx

dt
dt.

In this instance,

A =
∫ 2π

0
t cos t(sin t + t cos t) dt

= 1
2

∫ 2π

0
2t sin t cos t + 2t2 cos2 t dt

= 1
2

∫ 2π

0
t sin 2t + t2(cos 2t + 1) dt

= 1
2

∫ 2π

0
t2 + t2 cos 2t + t sin 2t dt.

Nota Bene

The integral calculates the area directly (all
regions contributing positively as opposed to
negatively in places), because, at e.g. t = π,
which is the negative y intercept, both y and
dx
dt are negative.

(b) Using the tabular integration method,

Signs Derivatives Integrals
+ t2 cos 2t

− 2t 1
2 sin 2t

+ 2 − 1
4 cos 2t

− 0 − 1
8 sin 2t.

So, the integral of t2 cos 2t is( 1
2 t2 − 1

4
)

sin 2t + 1
2 t cos 2t.

The integral of t sin 2t is
1
4 sin 2t − 1

2 cos 2t.

The contributions to the definite integral are

1
[

1
3 t3
]2π

0
= 8

3 π3.

2
[( 1

2 t2 − 1
4
)

sin 2t + 1
2 t cos 2t

]2π

0
= 0.

3
[

1
4 sin 2t − 1

2 cos 2t
]2π

0
= 0.

Together with the original 1/2,

A = 1
2 ·
( 8

3 π3 + 0 + 0
)

= 4
3 π3.
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4928. The upper half of the loop is

B

T

T

A

T

T
αα

90° − 2α

We resolve along the bisectors. The lh vertex gives

B = 2T cos(90° − 2α)
≡ 2T sin 2α

≡ 4T sin α cos α.

The other vertex gives A = 2T cos α. Substituting
for 2T cos α, we get B = 2A sin α. Squaring this,

B2 = 4A2 sin2 α

≡ 4A2(1 − cos2 α)

= 4A2
(

1 − A2

4T 2

)
.

We then rearrange to make T 2 the subject:

T 2 = A4

4A2 − B2 .

Since A, B, T > 0 and 4A2 > B2, we take the
positive square root, which gives

T = A2
√

4A2 − B2
, as required.

4929. The number n may or may not be a perfect square.
We consider these case by case:

1 Suppose n is not a perfect square. There is
no p such that p2 = n, so every divisor must
appear as part of a pair: pq = n, where p ̸= q.
Hence, g(n) is even.

2 Suppose n is a perfect square, with k2 = n.
Every divisor appears in a pair, except k,
which is paired with itself. So, g(n) is one
more than an even number, and is odd.

Hence, g(n) is odd iff n is a perfect square. qed.

4930. The parametric equations of the ellipse are

x = a cos t,

y = b sin t.

So, the area of the triangle is given by

A△ = b sin t(a − a cos t)
≡ ab sin t − ab sin t cos t

≡ 1
2 ab(2 sin t − sin 2t).

Setting the derivative to zero,

2 cos t − 2 cos 2t = 0
=⇒ 2 cos2 t − cos t − 1 = 0
=⇒ (2 cos t + 1)(cos t − 1) = 0
=⇒ cos t = 1, − 1

2 .

The former is a minimum, with A△ = 0. At the
latter, t = 2π/3. This is a maximum. So, the area
of the triangle satisfies

A△ ≤ 1
2 ab

(√
3 −

(
−

√
3

2

))
≡ 3

√
3

4 ab, as required.

4931. Let q = x + y and p = x − y.

(a) The curve is q = (p − a)(p − b). In the (p, q)
plane, this is a positive quadratic with two
roots at a < b. The (p, q) axes are angled at
45° to the (x, y) axes:

x

y

(b) The curve is q = (p − a)2(p − b). In the (p, q)
plane, this is a positive cubic with a double
root at p = a and a single root at p = b:

x

y

4932. The reciprocal triangle numbers are

1
Tn

= 2
n(n + 1) .

Writing this in partial fractions,

1
Tn

= 2
n

− 2
n + 1 .

So, the sum of the reciprocal triangle numbers is

S∞ = 2
1 − 2

2 + 2
2 − 2

3 + 2
3 − 2

4 + ...

We know that the sum converges, so we can group
the terms as follows:

S∞ = 2
1 +

(
− 2

2 + 2
2
)

+
(
− 2

3 + 2
3
)

+ ...

So, S∞ = 2, as required.

Nota Bene
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In an infinite sum, if the sum doesn’t converge, you
can’t group terms as above. The classic example
is Grandi’s series:

S = 1 − 1 + 1 − 1 + 1 − 1 + ...

It doesn’t converge. And, if you group the terms
in different ways, you get contradictory results:

S = (1 − 1) + (1 − 1) + (1 − 1) + ... = 0,

S = 1 + (−1 + 1) + (−1 + 1) + ... = 1.

Neither is valid. You can’t manipulate a sum
which doesn’t exist in the first place!

4933. The other two angles of inclination, measured in
the same sense as θ, are θ+45° and θ+90°. Around
the circumference, working with the whole system,
the tensions cancel. At angle ϕ, the component of
weight is W cos ϕ. The direction is set by the sign
of cos ϕ itself, hence all terms start with plus signs.
The resultant force is

2mg cos θ + mg cos(θ + 45°) + mg cos(θ + 90°).

We can ignore the factor of mg. Using the identity
cos(θ + 90°) ≡ − sin θ, the relevant quantity is

2 cos θ + cos(θ + 45°) − sin θ.

Using a compound-angle formula, this is

2 cos θ +
√

2
2 cos θ −

√
2

2 sin θ − sin θ

≡ 4+
√

2
2 cos θ − 2+

√
2

2 sin θ.

Setting to zero for equilibrium,(
4 +

√
2
)

cos θ =
(
2 +

√
2
)

sin θ

=⇒ tan θ = 4+
√

2
2+

√
2

= 3 −
√

2, as required.

4934. The boundary equations are formed by setting
each factor to zero.

1 The first boundary equation is a unit circle
centred on the origin.

2 The second boundary equation is a circle of
radius k < 1, centre (1 − k, 0). This is inside
the unit circle and tangent to it at (1, 0).

The points which satisfy the inequality are those
where one factor is positive and the other negative.
This is all points within the unit circle and outside
the other:

x

y

4935. Quoting a standard result, the trajectory before
the first bounce is

y = −gx2

2u2 + c.

Setting y to zero, the first bounce occurs at

x = u
√

2c
g .

So, each new trajectory is translated by twice this,
which is

δx = u
√

8c
g .

For the trajectory between the nth and (n + 1)th
bounces, we translate the original one by

∆x = nu
√

8c
g .

To enact this translation, we replace x in the first
equation, giving

y = −
g
(

x − nu
√

8c
g

)2

2u2 + c

≡ −
g
(

x2 − 2nu
√

8c
g x + n2u2 8c

g

)
2u2 + c

≡ −gx2

2u2 + nx

u

√
8cg − 4cn2 + c

≡ −gx2

2u2 + nx

u

√
8cg − c(4n2 − 1), as required.

4936. (a) Let x = 2t, so that dx = 2 dt. This gives∫ π
2

0

4 cos 2t

(1 + cos 2t)3 · 2 dt

=
∫ π

4

0

16 cos2 t − 8
(2 cos2 t)3 dt

=
∫ π

4

0
2 sec4 t − sec6 t dt.

(b) Taking out a factor of sec2 t, we use the second
Pythagorean trig identity:∫ π

4

0
sec2 t(2 sec2 t − sec4 t) dt

=
∫ π

4

0
sec2 t(2 + 2 tan2 t − (1 + tan2 t)2 dt

=
∫ π

4

0
sec2 t(1 − tan4 t) dt.

Integrating by inspection, this is[
tan t − 1

5 tan5 t
]π

4

0
= 4

5 .

Scaling by 5
4 , the value of the required integral

is 4
5 × 5

4 = 1.
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4937. The factorisation N = 2p−1(2p − 1) is, in fact, a
prime factorisation, since 2 is prime and we know
that the latter factor (2p − 1) is prime. Hence, the
factors of N come in two sets. Firstly, the powers
of two: {1, 2, ..., 2p−1}. Secondly, these powers of
two multiplied by (2p − 1), with the exception of
N itself: {(2p − 1), 2(2p − 1), ..., 2p−2(2p − 1)}.
The sums of these are geometric series. The first
has a = 1, r = 2, n = p; the second has a = 2p −1,
r = 2, n = p − 1. So, using the standard formula,
the sum of the factors is

S = 1(1 − 2p)
1 − 2 + (2p − 1)(1 − 2p−1)

1 − 2
≡ (2p − 1)(1 + 2p−1 − 1)
≡ (2p − 1)2p−1

= N.

Hence, N is perfect, as required.

4938. The boundary equation is x2 + y2 = 8. We solve
xy(x+y) = 16 simultaneously with this. Squaring
the latter,

x2y2(x2 + 2xy + y2) = 256
=⇒ x2y2(8 + 2xy) = 256
=⇒ (xy)3 + 4(xy)2 − 128 = 0
=⇒ (xy − 4)

(
(xy)2 + 8xy + 32

)
= 0.

The quadratic factor has ∆ = −64 < 0, so the
only root is xy = 4. Substituting this back into
x2 + y2 = 8, we get

x2 + 16
x2 = 8

=⇒
(
x2 − 4

)2 = 0
=⇒ (x − 2)2(x + 2)2 = 0.

This gives double roots at x = ±2. Only the +ve
of these lies on xy(x + y) = 16, at the point (2, 2).
So, the curve is tangential to the circle at a single
point, and doesn’t cross it elsewhere.
Furthermore, xy(x + y) = 16 has asymptotes at
x = 0, y = 0 and (x + y) = 0, so each of its three
branches is unbounded. Hence, it must always lie
on or outside the circle x2 + y2 = 8. Therefore, if
xy(x + y) = 16, then x2 + y2 ≥ 8.

x

y

4939. Differentiating,
dx

dθ
= −4 sin θ − 4 sin 2θ.

The integral between θ = 0 and θ = 2π is∫ 2π

0
(4 sin θ + 2 sin 2θ)(−4 sin θ − 4 sin 2θ) dθ.

The sense of rotation is anticlockwise, which puts
positive y with negative dx

dθ . So, the required area
is the negative of the above:

A =
∫ 2π

0
(4 sin θ + 2 sin 2θ)(4 sin θ + 4 sin 2θ) dθ.

The integrand is

16 sin2 θ + 12 sin θ sin 2θ + 8 sin2 2θ.

Using double-angle formulae, this is

8 − 8 cos 2θ + 24 sin2 θ cos θ + 4 − 4 cos 4θ

≡ 12 − 8 cos 2θ + 24 sin2 θ cos θ − 4 cos 4θ︸ ︷︷ ︸
∗

.

We can now integrate (inspection for the middle
term). In the resulting indefinite integral, all the
terms marked ∗ are composed of trig functions.
Their values are the same at θ = 0 and θ = 2π;
so, they don’t contribute to the definite integral.
Only the first term contributes, giving

A =
[
12θ − ...

]2π

0

= 24π.

4940. Let z = x2. This gives a quintic:

z5 − 2z4 + z3 − z2 + 2z − 2 = 0.

Setting the derivative to zero,

5z4 − 8z3 + 3z2 − 2z + 2 = 0.

This is a quartic. Setting its derivative to zero,

20z3 − 24z2 + 6z − 2 = 0
=⇒ 2(z − 1)(10z2 − 2z + 1) = 0.

The quadratic factor has discriminant −36. So,
the cubic has exactly one root, at z = 1. The
quartic, therefore, has exactly one sp, at z = 1.
Its value at z = 1 is

5z4 − 8z3 + 3z2 − 2z + 2
∣∣
t=1 = 0.

So, the quartic has exactly one root, at z = 1. The
quintic, therefore, has exactly one sp. This cannot
be a turning point, as a quintic must turn twice if
it turns at all. So, the sp of the quintic is a point
of inflection, meaning that the (positive) quintic
is never decreasing. So, it must have exactly one
root.
The quintic has value −2 at z = 0. So, since it is
a positive quintic, its root must satisfy z = α > 0.
Hence, as required, the order-10 polynomial has
exactly two real roots: x = ±

√
α.
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4941. For intersections,

x3 − x4 = mx + c.

For two distinct points of tangency, this equation
must have two double roots. So, we can write

x4 − x3 + mx + c ≡ (x − a)2(x − b)2.

Equating coefficients,

x3 : −1 = −2a − 2b,

x2 : 0 = a2 + 4ab + b2,

x0 : c = a2b2.

The x3 equation is a + b = 1
2 . The x2 equation is

0 = (a + b)2 + 2ab, which gives ab = 1
8 . So,

c = (ab)2

= 1
64 .

4942. (a) The range of the sine function is [−1, 1], which
is bounded. So, L cannot be ±∞.

(b) Consider the following equation:

sin(ln x) = 1
=⇒ ln x = π

2 + 2nπ, for n ∈ Z,

=⇒ x = e
π
2 +2nπ, for n ∈ Z.

Consider a sub-list of the above roots, with
n = −1, −2, −3, .... This can be expressed as

x = e
π
2

e2kπ
, for k ∈ N.

As k → ∞, these x values tend to 0 from
above. In other words, there are values of x

for which sin(ln x) = 1 as close to 0 as we
choose to find them. Hence, as x tends to zero
from above, x keeps passing through values for
which sin(ln x) = 1. Hence, L cannot be zero.

(c) The argument from (b) can be applied, mutatis
mutandis, to any potential limit k ∈ [−1, 1].
So, the limit is not infinite, nor is it in [−1, 1],
nor can it be outside [−1, 1], for the reasons in
part (a). So, the limit cannot be defined.

Nota Bene

The reason that the limit is undefined is that, as
x → 0+, the value of ln x tends towards negative
infinity. These values form the inputs of the sine
function. So, the value of the sine function cycles
between −1 and 1 infinitely many times as x gets
close to zero. This means, in effect, that the limit
approaches all values k ∈ [−1, 1] at the same time.
This can be seen on a graphing calculator: plot the
equation y = sin(ln x) and zoom into the y axis.

4943. The radius and the length of the ladder are both 1.
So, the angle between the radius and the vertical
is α. Hence, the angle between the reaction force
at the base and the vertical is α, as is the angle
between the friction and the horizontal. The force
diagram for the ladder is as follows:

R2

R1

F

mg

α

α

Assuming limiting friction, F = µR1. Vertically,

R1 cos α + µR1 sin α − mg = 0

=⇒ R1 = mg

cos α + µ sin α
.

Horizontally,

R1 sin α − µR1 cos α + R2 = 0.

Taking moments around the base,

2R2 cos α − mg sin α = 0
=⇒ R2 = 1

2 mg tan α.

Substituting this into the horizontal,

R1 sin α − µR1 cos α + 1
2 mg tan α = 0

=⇒ R1 = mg tan α

2(µ cos α − sin α) .

Equating the expressions for R1,

mg

cos α + µ sin α
= mg tan α

2(µ cos α − sin α)
=⇒ 2(µ cos α − sin α) = sin α + µ sin α tan α

=⇒ µ(2 cos α − sin α tan α) = 3 sin α

=⇒ µ = 3 sin α

2 cos α − sin α tan α
.

This is for limiting friction. For equilibrium, the
coefficient of friction must exceed the above value.
Multiplying top and bottom by 2 cos α,

µ ≥ 6 sin α cos α

4 cos2 α − 2 sin2 α

≡ 3 sin 2α

3 cos2 α − 3 sin2 α + cos2 α + sin2 α

≡ 3 sin 2α

3 cos 2α + 1 , as required.
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4944. Using the Euler substitution, let√
x2 + k = −x + t.

Differentiating this with respect to x,

x(x2 + k)− 1
2 = −1 + dt

dx

=⇒ dt

dx
= x√

x2 + k
+ 1

≡ x +
√

x2 + k√
x2 + k

≡ t√
x2 + k

=⇒ 1
t

dt = 1√
x2 + k

dx.

Enacting the substitution,∫ 1√
x2 + k

dx

=
∫ 1

t
dt

= ln |t| + c

= ln
∣∣∣x +

√
x2 + k

∣∣∣+ c, as required.

4945. We prove this by construction. The solution set of
sin θ > 1/2 includes the primary interval (π/6, 5π/6).
To 3sf, this is (0.534, 2.62), so it contains [1, 2].
Hence, set R defined as follows is a subset of S:

R =
{

x ∈ Q : 1 ≤ x2 ≤ 2
}

.

The following are all elements of R:

{1, 1.1, 1.01, 1.001, 1.0001, ...}.

Each of these elements is also in S. So, the set S

has infinitely many elements.

4946. Assume, for a contradiction, that every pair of
points 1 unit apart are coloured differently. Wlog,
colour a point X red, and construct two equilateral
triangles of side length 1 as shown.

A1 A2

X

Y

Neither A1 nor A2 is red. And, since they are a
distance of 1 unit apart, they cannot be the same
colour. Hence, one must be blue and the other
green. In turn, this means that point Y is red.
The distance between X and Y is

√
3.

Construct a circle, centred on X, of radius
√

3.
Then construct a circle of radius 1, centred on a
point on the circumference.

X
√

3
Q

P

1

Since points P and Q lie on the dotted circle, they
are both

√
3 from X, and are therefore both red.

And they are 1 unit apart. This is a contradiction.
Hence, there must be points of the same colour
separated by 1 unit.

4947. (a) True.
(b) False: x10 + 1 = 0 is a counterexample.
(c) True: the quintic must have a root x3 = k.

This is a cubic equation, which must itself have
a real root.

4948. (a) i. Smooth pulleys and light strings.
ii. The movable pulley is light. This means

that it cannot have any resultant force on
it, so its equation of motion is 2T1 −T2 = 0.
The tension in the upper string is twice the
tension in the lower string.

(b) Call the rightwards acceleration of the upper
string over its pulley a1, and likewise with a2
for the lower. The force diagrams for the three
masses are:

2T

4g

a1

T

2g

a2 − a1

T

3g

a2 + a1

The equations of motion are

2T − 4g = 4a1,

T − 2g = 2(a2 − a1),
3g − T = 3(a2 + a1).

Subtracting twice the second from the first,

0 = 8a1 − 4a2

=⇒ a2 = 2a1.

Adding the last two equations,

g = 5a2 + a1.

Substituting for a2,

g = 10a1 + a1

=⇒ a1 = 1
11 g.

So, the 4 kg mass accelerates at 1
11 g ms−2.
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4949. On a Venn diagram of the possibility space, there
are 4C2 = 6 regions in which two events occur,
4C1 = 4 regions in which one event occurs, and
4C0 = 1 region in which no events occur. So, there
are 11 relevant probabilities.

(a) Assume, for a contradiction, that

P(A ∩ B) > 1
2 .

The sum of the other 10 probabilities must be
less than 1/2, meaning that e.g. P(C) < 1/2.
Since P(A) = P(C), this is a contradiction.
So, P(A ∩ B) ≤ 1/2.
Consider the case in which all 11 probabilities
are zero, except

P(A ∩ B) = P(C ∩ D) = k
4 ,

P(A′ ∩ B′ ∩ C ′ ∩ D′) = 1 − k
2 .

The Venn diagram is

A

B

C

D

k
4

k
4

1 − k
2

With k ∈ [0, 1], this satisfies the conditions of
the problem. Hence, the set of possible values
for P(A ∩ B) is [0, 1/2].

(b) Set four of the two-way intersections, namely
P(A ∩ B), P(B ∩ C), P(C ∩ D) and P(D ∩ A)
to k

4 , and set P(A′ ∩ B′ ∩ C ′ ∩ D′) to 1 − k.
The Venn diagram is

A

B

D

C
1 − k

k/4k/4

k/4

k/4

With k ∈ [0, 1], this satisfies the conditions of
the problem, and gives P(A ∪ B ∪ C) = k. So,
the set of possible values for P(A ∪ B ∪ C) is
[0, 1].

4950. The domain of definition is [−1, 1]. Both sides of
the identity have odd symmetry, so we need only
prove the result for x ∈ [0, 1].

sin θ ≡ 2 sin 1
2 θ cos 1

2 θ

=⇒ sin2 θ ≡ 4 sin2 1
2 θ cos2 1

2 θ.

Let s = sin 1
2 θ:

sin2 θ ≡ 4s2(1 − s2)
=⇒ s4 − s2 + 1

4 sin2 θ = 0

=⇒ s2 = 1 ±
√

1 − sin2 θ

2 .

Given θ = 0, s = 0, we want the negative root:

sin2 1
2 θ ≡ 1 −

√
1 − sin2 θ

2 .

Let θ = arcsin x:

sin2 ( 1
2 arcsin x

)
= 1 −

√
1 − x2

2 .

The square of the original rhs is(
1
2
(√

1 + x −
√

1 − x
) )2

≡ 1
4

(
1 + x + (1 − x) − 2

√
1 − x2

)
≡ 1

4

(
2 − 2

√
1 − x2

)
≡ 1 −

√
1 − x2

2 .

Over the domain [0, 1], we can take the positive
square root. Combined with the aforementioned
symmetry, this proves the result for x ∈ [−1, 1].

4951. At height z = k, the (x, y) cross-section is

1

1

1 − k x

k

The area of the trapezium is

Ak = 1
2 (1 − k)(1 + k) ≡ 1

2
(
1 − k2).

To find the volume of the sculpture, we integrate
this between k = 0 and k = 1. This gives

Vsculpture =
∫ k=1

k=0

1
2
(
1 − k2) dk

=
[

1
2 k − 1

6 k3
]k=1

k=0

= 1
3 .
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4952. Projected at speed u and angle θ, the equation for
the time to maximum height is 0 = u sin θ − gt.
So, the time at which sparkling occurs is

t = u sin θ

g
.

The coordinates at this point are(
u2 sin 2θ

g
,

u2 sin2 θ

2g

)
.

The latter can be written as

y = u2(1 − cos 2θ)
4g

.

Rearranging the coordinate equations,

sin 2θ = gx

u2 ,

cos 2θ = 1 − 4gy

u2 .

Squaring and adding these,

g2x2

u4 +
(

1 − 4gy

u2

)2
= 1.

This is the equation of an ellipse, as required.

4953. There are n2 grid squares, giving n2Cn−2 as the
number of outcomes in the possibility space. We
need to show that there are n(n2 + 3) outcomes in
which the counters are collinear. We classify these
by the total length of the line involved, including
any blank grid squares outside the counters.

1 Of length n, there are n rows, n columns and
two diagonals. In each, there are nCn−2 ways
of positioning the counters. The number of
outcomes is

(2n + 2) × 1
2 n(n − 1)

≡n(n − 1)(n + 1).

2 Of length n − 1, there are four diagonals. In
each, there are n−1Cn−2 ways of positioning
the counters. This gives 4(n − 1) outcomes.

3 Of length n−2, there are four diagonals. Each
gives one outcome.

So, the total number of collinear outcomes is

n(n + 1)(n − 1) + 4(n − 1) + 4
≡ n(n2 + 3).

Dividing by the total number of outcomes, we
reach the required result:

p = n(n2 + 3)
n2Cn−2

.

4954. We define new coordinate variables as follows:

p = 1√
2 (y + x),

q = 1√
2 (y − x).

The (p, q) axes are at 45° to the (x, y) axes, and
have the same scaling. In terms of p and q, the
transformed graph is q = f(p). In terms of x and
y, it is

1√
2 (y − x) = f

(
1√
2 (y − x)

)
.

4955. (a) The circle geometry is
αβ

α

θ

Angle β is 90° − θ. So,

α = 90° − 1
2 β

= 90° − 1
2 (90° − θ)

≡ 1
2 θ + 45°.

The triangle of forces for A, scaled down by
mg, is as follows:

6

1
α

γ

θ

Using alternate angles,

γ = 90° − θ + α

= 135° − 1
2 θ.

Using the sine rule,

6 sin θ = sin(135° − 1
2 θ)

=⇒ 6 sin θ =
√

2
2 cos 1

2 θ +
√

2
2 sin 1

2 θ

=⇒ 6
√

2 sin θ = cos 1
2 θ + sin 1

2 θ.

(b) Squaring both sides,

72 sin2 θ = cos2 1
2 θ + 2 sin 1

2 θ cos 1
2 θ + sin2 1

2 θ.

Simplifying, we get a quadratic in sin θ:

72 sin2 θ = 1 + sin θ

=⇒ 72 sin2 θ − sin θ − 1 = 0
=⇒ (8 sin θ − 1)(9 sin θ + 1) = 0
=⇒ sin θ = 1

8 , − 1
9 .

Since θ ∈ (0, π/2), we reject the negative root,
which gives θ = arcsin 1

8 , as required.
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4956. (a) Start with sec x + tan x ≥ 0:

d

dx
ln(sec x + tan x)

≡ sec x tan x + sec2 x

sec x + tan x

≡ sec x(tan x + sec x)
sec x + tan x

≡ sec x.

Then with sec x + tan x < 0:

d

dx
ln(− sec x − tan x)

≡ − sec x tan x − sec2 x

− sec x − tan x

≡ sec x.

Combining both results,∫
sec x = ln |sec x + tan x| + c, as required.

(b) Let u = sec x and v′ = sec2 x. From these, we
get u′ = sec x tan x and v = tan x. Quoting
the parts formula,

I =
∫

sec3 x dx

= sec x tan x −
∫

sec x tan2 x dx

= sec x tan x −
∫

sec x(sec2 x − 1) dx

= sec x tan x −
∫

sec3 dx +
∫

sec x dx.

The integral in the middle is −I. So,

2I = sec x tan x +
∫

sec x dx.

Quoting the result from part (a),

I = 1
2
(

sec x tan x + ln | sec x + tan x|) + d.

4957. Assume that 2k + 1 is prime, and that k can be
factorised as k = ab for a, b > 1. This gives

2k + 1 = 2ab + 1.

If a is odd, then we can factorise as follows:

2ab + 1
=
(
2b + 1

)(
2(a−1)b − 2(a−2)b + ... − 2b + 1︸ ︷︷ ︸

a terms

)
But 2ab + 1 is prime, so a must be even. And a

and b appear symmetrically, so the same argument
applies to b. Hence, any factors of k are even. This
implies that k is a power of 2.

4958. Reflection in z = 1 is equivalent to reflection in
z = 0 and then translation by 2k. This gives

z = − sin(x + y) − sin(x − y) + 2.

Translating by vector πi + 2πj − 2k, we replace x

by x − π, y by y − 2π and z by z + 2. This gives

z + 2 = − sin(x − π + y − 2π)
− sin(x − π − (y − 2π) + 2

=⇒ z = − sin(x + y − 3π) − sin(x − y + π).

We now use the following identities:

sin(θ + 2π) ≡ sin θ,

sin(θ + π) ≡ − sin θ.

These give the new equation as

z = − sin(x + y + π) − sin(x − y + π)
≡ sin(x + y) + sin(x − y).

This is the same as the original surface.

4959. (a) i. Using the variable p to enact the integral,
keeping x for its limits, the cross-sectional
area is given by

A =
∫ x

−x

3
4 x2 − 3

4 p2 dp

≡
[

3
4 x2p − 1

4 p3
]x

−x

≡ 2
( 3

4 x3 − 1
4 x3)

≡ x3.

ii. Call the length of the ditch l. The rate
of gain of cross-sectional area due to influx
is 3 m3 per metre per month, which is 3l

m3 per month. The surface of the water is
then a rectangle measuring 2x by l, with
area S = 2xl. So, the loss per month is
1.5 × 2xl = 3xl. These combine to give

dV

dt
= 3l − 3xl

≡ 3l(1 − x).

In terms of cross-sectional area, the volume
is V = Al. Differentiating this,

dV

dt
= dA

dt
l.

Putting the results together,
dA

dt
l = 3l(1 − x)

=⇒ dA

dt
= 3(1 − x).

(b) Substituting A = x3 in,
d

dt
(x3) = 3(1 − x)

=⇒ 3x2 dx

dt
= 3(1 − x)

=⇒
∫

x2

1 − x
dx =

∫
1 dt.
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We rewrite the x integrand x2

1 − x
as

−x(1 − x) − 1(1 − x) + 1
1 − x

≡ − x − 1 + 1
1 − x

.

This gives

− 1
2 x2 − x − ln |1 − x| = t + c

∴ 1
2 x2 + x + ln |1 − x| = d − t.

For large t, d − t → −∞. Since the quadratic
1
2 x2 + x is bounded below, we need

ln |1 − x| ≈ d − t

=⇒ |1 − x| ≈ ed−t.

Whatever the value of d, x must tend to 1 for
large t. This gives a depth y of 0.75 m or 75
cm, as required.

4960. Since f1(x) and f2(x) are both solutions of the de,
their second derivatives f ′′

1(x) and f ′′
2(x) are both

identically equal to g(x). So, they are identically
equal to each other:

f ′′
1(x) − f ′′

2(x) ≡ 0.

Integrating this twice, the following holds for some
constants c and d:

f1(x) − f2(x) ≡ cx + d.

The intersections of y = f1(x) and y = f2(x) are
roots of the equation

f1(x) − f2(x) = 0.

This is cx + d = 0, which is a linear equation. It
cannot have infinitely many roots, because f1 and
f2 are distinct. So, it has a maximum of one root.
This gives a maximum of one intersection between
y = f1(x) and y = f2(x).
So, she would see the same effect.

4961. Place A wlog. Then consider the outcomes as a
list of the 5! orders of the remaining five letters.
Success requires exactly two of D, E and F to be
next to one another. So, failure requires either all
three together, or all three separated:

1 all together. There are 3! = 6 orders of
{DEF}, B, C, and then 3! orders of D, E, F

within that, giving 36 outcomes.
2 all separated. There is one set of locations

for D, E, F , with 3! orders within it, and one
pair of locations for B, C, with two orders
within it. This gives 3! × 2! = 12 outcomes.

So, the probability of failure is 48
5! = 2

5 , and the
probability of success is 3

5 .

Alternative Method

The exact positions of the points isn’t relevant,
only their order around the circumference is. So,
without loss of generality, we can place A, B, C in
a triangle, and D between A and B. Consider the
location of E. With probability 1

2 , E is next to D.
1 With E next to D, success requires F to be

apart from both of them. There are 5 regions
to choose from, of which 2 are successful.

2 With E apart from D, success requires F to
be next to either E or D. There are 5 regions
to choose from, of which 4 are successful.

So, the overall probability is

p = 1
2 × 2

5 + 1
2 × 4

5

= 3
5 .

4962. The shortest distance must lie along a normal to
both surfaces. This is a normal to the plane which
passes through the origin, i.e. the line

x = y = z.

The closest point to the origin is (a, a, a), where
a + a + a = 9. This is (3, 3, 3), which is a distance√

27 from O. The radius of the sphere is 3, so the
shortest distance is

√
27 − 3.

4963. The golden ratio ϕ is a root of the equation

x2 − x − 1 = 0.

So, we know that

ϕ2 = ϕ + 1.

Dividing through by ϕ, it also tells us that

ϕ = 1 + ϕ−1

=⇒ 1 − ϕ = ϕ−1.

Using these results, the rhs is

Fn + Fn+1

= ϕn − (−ϕ)−n + ϕn+1 − (−ϕ)−n−1
√

5

≡ ϕn(1 + ϕ) − (−ϕ)−n−1(−ϕ + 1)√
5

≡ ϕnϕ2 − (−ϕ)−n−1ϕ−1
√

5

≡ ϕn+2 − (−ϕ)−n−2
√

5
= Fn+2.

Since it also produces the correct starting values
F1 = F2 = 1, this ordinal definition generates the
Fibonacci sequence.
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4964. The rhs is the number of ways of choosing (r + 1)
people from a group of (n + 1).
Label the people 1, ..., n + 1. We classify the ways
of picking the committee by the least label picked.
If label 1 is picked out, then there are nCr ways of
picking the remaining r. If label 2 is the least label
picked, then there are n−1Cr ways. Continuing in
this vein, the full classification is

Smallest picked Number of ways
1 nCr

2 n−1Cr

3 n−2Cr

... ...
n − r + 1 rCr.

Adding these up (from the bottom of the table to
the top), we get

n∑
i=r

iCr.

Equating the two results for the number of ways
of picking the committee proves the result:

n∑
i=r

iCr ≡ n+1Cr+1.

Nota Bene

This is called the hockey-stick identity; locate the
sum and summands on Pascal’s triangle to see why.

4965. Wlog, let r = 1. Call the acceleration of the upper
core a ms−2. Initially, a line of centres between
the upper and lower cores has angle of inclination
60°, with components of length

√
3 vertically and

1 horizontally.
Suppose the upper core moves downwards a small
distance δy and a lower core moves sideways by
δx. The distance between the centres is still 2.

√
3

1

2 √
3 − δy

1 + δx

2

Using Pythagoras,(
1 + δx

)2 +
(√

3 − δy
)2 = 22

=⇒ 1 + 2δx + δx2 + 3 − 2
√

3δy + δy2 = 4
=⇒ 2δx + δx2 − 2

√
3δy + δy2 = 0.

The changes are small, so the quadratic terms can
be neglected. This gives

2δx − 2
√

3δy ≈ 0
=⇒ δx ≈

√
3δy.

Hence, at the instant the rope breaks, the ratio of
accelerations is

√
3 : 1.

Resolving vertically for the upper core,

mg − 2R sin 60° = ma

=⇒ mg −
√

3R = ma.

Resolving horizontally for a lower core,

R sin 30° =
√

3ma

=⇒ R = 2
√

3ma.

Substituting into the upper-core equation,

mg −
√

3 · 2
√

3ma = ma

=⇒ a = 1
7 g, as required.

4966. Let t = tan x
2 . Writing sin x in terms of t,

sin x ≡ 2 sin x
2 cos x

2

≡
2 tan x

2
sec2 x

2

≡
2 tan x

2
1 + tan2 x

2

= 2t

1 + t2 .

And writing cos x in terms of t,

cos x ≡ cos2 x
2 − sin2 x

2

≡
1 − tan2 x

2
sec2 x

2

≡
1 − tan2 x

2
1 + tan2 x

2

= 1 − t2

1 + t2 .

For the change of variable of integration,

dt

dx
= 1

2 sec2 x
2

≡ 1
2
(
1 + tan2 x

2
)

= 1
2
(
1 + t2).

This gives

dx = 2 dt

1 + t2 .

Enacting the Weierstrass substitution,∫
f (sin x, cos x) dx

can be written∫
f
(

2t

1 + t2 ,
1 − t2

1 + t2

)
2 dt

1 + t2 , as required.
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4967. (a) The derivatives of the quadratic are 2ax + b

and 2a. So, in order to match the value of the
function and its first two derivatives at x = k,
we require

f ′′(k) = 2a,

f ′(k) = 2ak + b,

f(k) = ak2 + bk + c.

From the top, this gives

a = 1
2 f ′′(k),

b = f ′(k) − k f ′′(k),
c = f(k) − k(f ′(k) − k f ′′(k)) − 1

2 k2 f ′′(k)
≡ f(k) − k f ′(k) + 1

2 k2 f ′′(k).

(b) For f(x) = ln x + x, the derivatives are

f ′(x) = 1
x + 1,

f ′′(x) = − 1
x2 .

Substituting x = k, this gives
i. a = − 1

2k2 .
ii. b = 1

k + 1 − k · − 1
k2

≡ 2
k + 1

.

iii. c = ln k + k − k
( 1

k + 1
)

+ 1
2 k2 · − 1

k2

= ln k − 3
2

(c) At k = 0.5, the coefficients are

a = − 1
2×0.52 = −2,

b = 2
0.5 + 1 = 5,

c = ln 1
2 − 3

2 = − ln 2 − 3
2 .

So, the approximating parabola is

y = −2x2 + 5x − ln 2 − 3
2 .

Setting y = 0 to find the new approximation,

− 2x2 + 5x − ln 2 − 3
2 = 0

=⇒ 2x2 − 5x + ln 2 + 3
2 = 0

=⇒ x = 5 ±
√

25 − 8(ln 2 + 3/2)
4

= 5 ±
√

13 − 8 ln 2
4 .

Taking the −ve root, the new approximation
is at

x1 = 5 −
√

13 − 8 ln 2
4 ≈ 0.567412.

4968. Adding the equations, x + y = 2t. Subtracting
them, x − y = 2t3. Let X = x + y and Y = x − y.
This gives parametric equations, in the (X, Y )
plane, X = 2t and Y = 2t3, which has Cartesian
equation Y = 1

4 X3. The second derivative is

d2Y

dX2 = 3
2 X.

This changes sign at X = 0, which is the origin.

x

y

4969. In Nii along the rope, the tensions, which are non-
constant but internal, must cancel by Niii. We
only need consider the component of the weight
acting along the tangent. Consider a small section
of rope subtending angle δθ at the centre. Wlog,
let its mass be δθ.

θ

δθδθg

δR

In the limit of small δθ, the tangential component
of the weight of this piece of rope is

δθg sin
(
θ − π

2 ) = −g cos θ δθ.

So, the total resultant force is given by

F = lim
δθ→0

θ= 5π
6∑

θ= π
3

−g cos θ δθ.

Taking the limit, this becomes an integral:

F =
∫ 5π

6

π
3

−g cos θ dθ

=
[
−g sin θ

] 5π
6

π
3

= − 1
2 g +

√
3

2 g

=
√

3 − 1
2 g.

The total mass of the rope is given by the total
angle subtended at the centre, which is 1

2 π. Nii is
√

3 − 1
2 g = 1

2 πa

=⇒ a =
√

3 − 1
π

g ms−2, as required.
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4970. The cubic and therefore its derivative both have
integer coefficients. So, the gradient at x = a is
an integer. And the equation of the tangent line is
y = m(x − a) + f(a). When written as y = mx + c,
both m and c are integers.
Consider the equation for intersections between
the curve and the tangent line:

f(x) − g(x) = 0.

This is a monic cubic with integer coefficients. We
already know that it has a double root at x = a.
So, it must have a factor of (x − a)2. Taking this
factor out, the equation for intersections is

(x − a)2(x − b) = 0
⇐⇒ x3 − (2a + b)x2 + (a2 + 2ab)x − a2b = 0.

We already know that all coefficients are integers.
So, 2a + b is an integer. And so is 2a. Hence, b

must be an integer.

4971. When the distance from the origin is greatest or
least, the tangent vector is perpendicular to the
position vector. In other words,

dy

dx
= −x

y
.

Differentiating the original curve,

2(y − x)
(

dy

dx
− 1
)

+ 2y
dy

dx
= 0.

Substituting the previous equation in,

2(y − x)
(

− x
y − 1

)
+ 2y · − x

y = 0

=⇒ y2 + xy − x2 = 0

=⇒ y = −x ±
√

x2 + 4x2

2

≡ −1 ±
√

5
2 x.

The lines through the points of greatest and least
distance from the origin are the lines of symmetry.
These are 2y =

(
−1 ±

√
5
)
x, as required.

4972. Assume, for a contradiction, that
1 2p − 1 is prime,
2 p is not prime, and can be written as p = ab,

where a and b are integers greater than 1.
This gives

2p − 1
= 2ab − 1
=
(
2a − 1

)(
1 + 2a + 22a + ... + 2a(b−1)).

Since a, b > 1, both factors above are greater than
1. So, 2p − 1 is not prime. This is a contradiction.
Hence, if 2p − 1 is prime, then p is prime. qed.

4973. Consider the asymptote at the x axis (y = 0) as
x → ∞. Assume, for a contradiction, that a ̸= 0.
Whatever the value of the other constants b, c, d, e,
the term ax4 must eventually dominate. And,
since it tends to infinity, there is a point beyond
which the lhs cannot equal 4. So, the asymptote
at the x axis (which continues to produce points
all the way to infinity) tells us that a = 0, i.e. that
the lhs has a factor of y.
Generalising this argument, the asymptote at the
y axis (x = 0) necessitates a factor of x, and the
asymptotes at x ± y = 0 necessitate factors of
(x ± y). So, the curve must be

xy(x + y)(x − y) = k.

Multiplying out and scaling to ensure that the
curve is tangent to the circle, the equation of the
curve is

x3y − xy3 = 4.

This gives a = 0, b = 1, c = 0, d = −1, e = 0.

4974. If a circle intersects the line of symmetry, then its
centre must lie on it. If a circle doesn’t intersect
the line of symmetry, then it must be mirrored on
the opposite side. It is clear that having all three
centres on the line of symmetry is not maximal.
So, we centre one circle on the line of symmetry,
and put the other two symmetrically either side
of it. The optimal arrangement must be of the
following type:

Call the radii R, r, r. The vertical distance between
the centres is given by√

(R + r)2 −
( 1

2 − r
)2

≡ 1
2

√
(2R + 1)(2R + 4r − 1).

So, equating expressions for the square’s height,

R + r + 1
2

√
(2R + 1)(2R + 4r − 1) = 1

=⇒
√

(2R + 1)(2R + 4r − 1) = 2 − 2R − 2r.

This simplifies to 8R = 4r2 −12r +5. So, the total
area is given by

Atotal = π
(
R2 + 2r2)

=⇒ 1
π Atotal = 1

64 (4r2 − 12r + 5)2 + 2r2

=⇒ 64
π Atotal = 16r4 − 96r3 + 312r2 − 120r + 25.
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Analysing this quartic, we find that it has only one
sp, a minimum at r ≈ 0.212. Hence, the quartic is
maximised at its boundaries, which are defined by
the fact that R ≤ 1/2 and r ≥ 1/4. The maximum
value for the area can only, therefore, be attained
at one of the following boundary cases:

1 With R as large as possible:

In this case, R = 1/2 and r = 1
2
(
3 − 2

√
2
)
.

This gives a total area of

Atotal = 1
4 π

(
1 + 2

(
3 − 2

√
2
)2
)

= 1
4 π
(
35 − 24

√
2
)

≈ 83.16%.

2 With r as large as possible:

In this case, r = 1/4 and R = 9/32. This gives

Atotal = π
(( 9

32
)2 + 2

( 1
4
)2
)

= 209
1024 π

≈ 64.12%.

Hence, the optimal arrangement is with R = 1/2,
covering a little over 83% of the area.

4975. The centre of the needle must land on one of the
floorboards. Consider this floorboard as having
height y ∈ [0, 1]. So, the centre of the needle lands
at y, which is distributed uniformly over [0, 1]. The
position in the x direction is not relevant. Let the
needle have angle of inclination to the x axis θ,
where θ is distributed uniformly over [0, π/2).

θ

The component of the length of the needle in y is
sin θ. So, at angle θ, any y value within 1

2 sin θ

of either 0 or 1 will result in the needle crossing
a crack. The possibility space has size 1, so the
probability of this is sin θ.

To calculate the total probability, we integrate this
over all possible orientations θ ∈ [0, π/2), dividing
by the width of the interval. This gives

p = 1
π/2

∫ π
2

0
sin θ dθ

= 2
π

[
− cos θ

]π
2

0

= 2
π , as required.

4976. (a) Factorising, the curve Q is

y = x(x − 2)(x + 2)(x − 4)(x + 4).

So, the curve is as shown below, with the three
double tangents added:

x

y

It is clear visually that there can be no others.
For proof, the following algebra serves.

(b) The steepest double tangent passes through
the origin. This has equation y = kx. The
equation for intersections between it and Q is

x5 − 20x3 + 64x = kx

=⇒ x5 − 20x3 + (64 − k)x = 0
=⇒ x(x4 − 20x2 + (64 − k)) = 0.

For a double tangent, the quartic factor must
be expressible as

x4 − 20x2 + 64 − k ≡ (x − a)2(x + a)2

≡ x4 − 2a2x2 + a4.

Equating coefficients of x2, we get a =
√

10.
The constant terms then give 64 − k = a4, so
k = −36.
The other tangents have equation y = mx + c.
For intersections,

x5 − 20x3 + 64x = mx + c

=⇒ x5 − 20x3 + (64 − m)x − c = 0.

This must be expressible as

x5 − 20x3 + (64 − m)x − c

≡ (x + p)2(x + q)2(x + r)
≡
(
x2 + 2px + p2)(x2 + 2qx + q2)(x + r

)
.

Equating coefficients,

x4 : 0 = 2p + 2q + r =⇒ 2(p + q) = −r,

x3 : −20 =
(
p2 + 4pq + q2)+ 2r(p + q),

x2 : 0 = 2pq(p + q) +
(
p2 + 4pq + q2)r.
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We can simplify these with the substitution
a = p + q, b = 2pq:

x4 : 2a = −r,

x3 : −20 = a2 + b + 2ar,

x2 : 0 = ab + (a2 + b)r.

Eliminating r,

−20 = a2 + b − 4a2 =⇒ 20 = 3a2 − b,

0 = ab − 2a3 − 2ab =⇒ 0 = a(2a2 + b).

In the latter, a = 0 corresponds to the tangent
through the origin. Dividing by a, we have

20 = 3a2 − b,

0 = 2a2 + b.

Adding gives a = 2 and b = −8. Solving for
p and q yields p, q = 1 ±

√
5, and then r = 4.

So, the equation for intersections is

x5 − 20x3 + 80x − 64 = 0.

The gradient of the tangent is −16.
Collating this information, the double tangent
through the origin has gradient −36 and the
other two have gradient −16.

4977. On the original cube, the path is

Unwrapped to a flat net, this is

A

A

B

B

C

The path consists of a total of four copies of the
hypotenuse of the triangle shown:

1

1
2

√
5

2

So, the total length of the loop is 2
√

5.

4978. At height z, the cross-section of the region T is a
triangle. Setting y = 0, its x width is given by
x = 1 − z. By symmetry, the y width is the same.
So, the area of the triangle at height z is given by

Az = 1
2 (1 − z)2.

To find the volume, we integrate this area from
z = 0 to z = 1:

V =
∫ z=1

z=0
Az dz

=
∫ 1

0

1
2 (1 − z)2 dz

=
[
− 1

6 (1 − z)3
]1

0

= 1
6 , as required.

4979. Factorising, the inequality is

(x − y)(x + y)(xy − 1)(xy + 1) ≤ 0.

So, the boundary equations are

y = ±x, xy = ±1.

There are no repeated factors. So, crossing over
any boundary equation changes the sign of the lhs.
Hence, we have a chequerboard pattern bounded
by the given lines, with every other region shaded.
Testing (1, 0), we see that the region containing
the positive x axis satisfies the inequality. All of
the other regions follow from there:

4980. The possibility space consists of the 45 ways of
colouring the regions. There are four ways of
colouring the central region. Having done this, for
successful outcomes, three colours remain for the
outside four.

1 Type abac. There are 3 choices for the pair.
Having chosen the pair, the number of orders
is 4.

2 Type abab. There are 3 choices for the two
pairs, and then 2 orders, giving 6 outcomes.

The probability is

p = 4(3 × 4 + 3 × 2)
45 = 9

128 .
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Alternative Method

Colour the central region red, wlog. Success then
requires no red regions around the outside. This
has probability ( 3

4
)4 = 81

256 .

We now have four regions in a ring, each of which
is coloured yellow, green or blue. Colour one of
them yellow, wlog. For success, the two adjacent
regions cannot be yellow. They can either be the
same colour as each other or different colours:

1 The probability that both adjacent regions
are the same non-yellow colour is

2 ×
( 1

3
)2 = 2

9 .

Say both are blue: the remaining region can
be yellow or green, with probability 2

3 .
2 The probability that the adjacent regions are

coloured one green, one blue is

2 ×
( 1

3
)2 = 2

9 .

Success then requires the last region to be
yellow, with probability 1

3 .
So, the overall probability is

p = 81
256 × 2

9
( 2

9 × 2
3 + 2

9 × 1
3
)

= 9
128 .

4981. Consider the following expression:

cos(θ − ϕ) − cos(θ + ϕ)
≡ cos θ cos ϕ + sin θ sin ϕ

− (cos θ cos ϕ − sin θ sin ϕ)
≡ 2 sin θ sin ϕ.

Setting θ = 5x and ϕ = 3x, this gives

sin 5x sin 3x ≡ 1
2 (cos 2x − cos 8x).

We can now integrate:∫
sin 5x sin 3x dx

= 1
2

∫
cos 2x − cos 8x dx

= 1
4 sin 2x − 1

16 sin 8x + c.

Nota Bene

The quickest way to solve this problem is with the
following product-to-sum identity:

sin a sin b ≡ cos(a − b) − cos(a + b)
2 .

This is not assumed knowledge in this book.

4982. Assume, for a contradiction, limiting friction in
both components. The reaction is mg cos θ, so the
maximal frictions are

F1 = µ1mg cos θ,

F2 = µ2mg cos θ.

Ignoring the normal dimension, the 2d plane of
the slope is as follows. Note that vertical in the
diagram is not vertical in (x, y, z) space. Shown
acting vertically down the page is the component
of weight acting down the slope, which is mg sin θ.
For visualisation: the background of the following
diagram is the surface of the snow: the three forces
all act along the surface of the snow.

mg sin θ

µ1mg cos θ

µ2mg cos θ

ϕ

Direction of skis

For constant speed, the resultant friction must
point up the slope. Its magnitude is

mg cos θ
√

µ2
1 + µ2

2

> mg cos θµ2

> mg cos θ tan θ

= mg sin θ.

Therefore, the resultant force will act up the slope,
and the skier will slow down. So, the choice of path
in which both frictions are maximal is not steep
enough. We have a choice: either reduce Fpar or
Fper below maximal. The triangle of forces is

mg sin θ

Fpar

Fper

Direction of skis

ϕ

To minimise ϕ (steepest course), we need to reduce
Fper below maximal, while maintaining

Fpar = µ1mg cos θ.

In this case, the above triangle gives

mg sin θ cos ϕ = µ1mg cos θ

=⇒ cos ϕ = µ1 cot θ, as required.
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4983. The central hexagon is a ring of six regions, each
bordering two neighbours. Successful colourings
are of four types:

1 Type ababab. There are 3 choices for the
colours, then 2 orders, giving 6 outcomes.

2 Type ababac. Since each appears differently,
there are 3! choices for the colours. Then,
having chosen, there are 2 location-sets for
the as, and 3 locations for c. This gives
3! · 2 · 3 = 36 outcomes.

3 Type abcacb. There are 3 choices for the
colour (a here) taking opposite spots. There
are 3 location-pairs for this colour. There are
then 2 orders for the remaining colours. This
gives 3 · 3 · 2 = 18.

4 Type abcabc. There are 3! = 6 orders.
Overall, there are 6+36+18+6 = 66 possibilities.
Once the central hexagon has been coloured, the
three remaining triangles are independent of each
other. For every arrangement of the central
hexagon, each individual outer triangle can be
coloured independently in two ways. The total
number of possibilities, therefore, is

66 × 23 = 528.

4984. Assume for a contradiction, that k ∈ Z,
√

k /∈ Z,
and

√
k ∈ Q. Since

√
k is rational, we can write

it as
√

k = p/q, where p, q ∈ N have no common
factors. Rearranging, we get

p2 = kq2.

Consider the prime factorisation of k. If any prime
factor a appears to an odd power, then, since
squares contain only even powers, the equation
above will have different numbers of factors of a

on its two sides. This is impossible. Hence, every
prime factor of k must appear to an even power.
But this means that k is a perfect square, which
contradicts

√
k /∈ Z.

So, if k ∈ Z and
√

k /∈ Z, then
√

k /∈ Q. qed.

4985. The path P of the centre of the moving unit circle
is shown below, as well as the circle C of radius 2.
P is a Lissajous curve, consisting of independent
sinusoidal motion in 2d, with frequencies 2 : 1. Its
parametric equations are x = 2 sin 2t, y = 2 sin t.

x

A

B

We need to prove that every point shaded grey lies
within 1 unit of the path P . To do this, we need
only consider the points which could be maximally
far from path P . There are, up to reflections, two
such points, labelled A and B above.
Point A is certainly within 1 unit of path P , since
a distance 1 down from (0, 2) puts it at (0, 1). The
gradients at the origin are non-zero, so there are
points either side of O sufficiently close to A.
Point B requires a calculation. We are looking for
the point on P , in the positive quadrant, which is
closest to B. For the gradient of the path P ,

dx

dt
= 4 cos 2t,

dy

dt
= 2 cos t.

Using the parametric differentiation formula,

dy

dx
= 2 cos t

4 cos 2t

≡ cos t

2 cos 2t
.

The normal gradient, then, is given by

mnormal = −2 cos 2t

cos t
.

So, the equation of a generic normal is

y − 2 sin t = −2 cos 2t

cos t
(x − 2 sin 2t).

Setting this normal to pass through (2, 0),

−2 sin t = −2 cos 2t

cos t
(2 − 2 sin 2t)

=⇒ 2 sin t cos t = 4 cos 2t(1 − sin 2t)
=⇒ sin 2t = 4 cos 2t(1 − sin 2t).

We solve numerically, giving t = 0.4103 radians to
4dp. We don’t need this exactly, because we are
only trying to find a point on the curve which is
within unit distance of (2, 0).
Substituting t = 0.4103 radians, the relevant point
on P is (1.46311..., 0.79776...). We can round the y

value up and the x value down, guaranteeing that
(1.4631, 0.7978) is further from B than the curve P

is from B. The distance between (1.4631, 0.7978)
and (2, 0) is

d =
√

0.53692 + 0.79782

= 0.96163...

< 1.

Hence, there are points on path P which are less
than 1 unit distant from B. This proves that no
points in the shaded circle C lie more than 1 unit
away from path P .
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4986. Point P is
(

− 3
√

2
2 , −

√
2

2

)
. The gradient is

dy

dx
=

√
2 cos t

−
√

6 sin t
.

So, the normal gradient is
√

3 tan t. At P , this is
m = 1. Hence, the equation of the normal at P

is y = x +
√

2. Rotating the ground and gravity
rather than the prism, the forces, not including the
couple, are

P

Q

N

mg

x

Since the couple exerts no resultant force, we know
that N = mg. Hence, N and mg must themselves
form a couple, whose magnitude is equal to that
applied externally.
To calculate the perpendicular distance between
the forces, we solve for point Q. The equations
are y = x +

√
2 and y = −x, so point Q is at

(−
√

2/2,
√

2/2). By Pythagoras, |OQ| = 1. So, the
magnitude of the applied couple is

|τ | = mg Nm.

Nota Bene

The moment of a couple is the same around any
point, which is why its magnitude is Fd, where F

is the magnitude of each of the forces, and d is the
perpendicular distance between them.

4987. We can rewrite x2 as |x|2 and y as |y|2, giving

|x|2 + |y| ≤ |y|2 + |x| .

Since x only appears as |x| and y only as |y|, the
solution set is symmetrical in the x and y axes. So,
consider the positive quadrant. The inequality is

x2 + y ≤ y2 + x

⇐⇒ x2 − x ≤ y2 − y

⇐⇒
(
x − 1

2
)2 ≤

(
y − 1

2
)2

.

The boundary equations are y = x and x + y = 1.
We truncate these to the positive quadrant, and
then mirror them in the axes. Checking regions,
the solution set is

x

y

4988. We sketch the boundary equation. The magnitude
of the indices means we can approximate the curve
with a set of line segments. Factorising, it is

xy
(
x9999 + y9999) = 1.

If e.g |x| is greater than 1 but y isn’t, then the
heavy factor is huge, requiring e.g. y to be very
close to zero. So, the first set of line segments is

x

y

If both |x| and |y| are greater than 1, then they
must be approximately negatives of one another
to limit the heavy factor. This gives

x

y

There are also solution points with either x or y

close to zero. These must join the existing lines.
Noting that there are points close to (1, 1), the full
boundary graph is approximately

x

y

Testing points, the region satisfying the inequality
is approximately

x

y

Counting up integer squares, 6 out of 16 are
shaded. So, for a point chosen randomly in S,

P
(

x10000y + xy10000 ≥ 1
)

≈ 3
8 , as required.
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4989. These three cubics have, respectively, one, two
or no sps. The number of sps is not altered by
stretches, translations or reflections. So, if a cubic
graph can be transformed to one of these curves,
then it cannot be transformed to any of the others.
Consider a cubic

y = ax3 + bx2 + cx + d.

A stretch by factor 1
a in the y direction converts

this to the form

y = x3 + b
a x2 + c

a x + d
a .

We now complete the cube. This deals with the
x2 term, giving, for some constants p and q,

y =
(
x − b

3a

)3 + px + q.

We now translate by b
3a i. This leaves, for some

new constants r and s,

y = x3 + rx + s.

Translating by −sj, we have

y = x3 + rx.

Consider the sign of r:
1 If r = 0, then we have reached y = x3.
2 If r > 0, then we scale in the x direction by

1/
√

r. This gives

y =
(√

rx
)3 + r

(√
rx
)

= r
3
2 (x3 + x).

Stretching by factor r− 3
2 in the y direction

yields y = x3 + x.

3 If r < 0, let k = −r. Applying the argument
above then brings us to y = x3 − x.

So, every cubic can be transformed to at least one
of y = x3, y = x3 + x or y = x3 − x.
Therefore, classifying by sps as described earlier,
every cubic can be transformed to exactly one of
y = x3, y = x3 + x or y = x3 − x.

4990. According to the angle in a semicircle theorem,
the hypotenuse is a diameter of the circumcircle,
so R = 1

2 c.
To find r, set the triangle up as follows:

r
1
2 θ

1
2 θ

a − r r

b
c

Since the incentre lies on the angle bisectors,

tan 1
2 θ = r

a − r
.

Rearranging this,

r =
a tan 1

2 θ

1 + tan 1
2 θ

.

Using the given half-angle formula,

r =
a sin θ

1+cos θ

1 + sin θ
1+cos θ

≡ a sin θ

cos θ + sin θ + 1 .

Substituting the trig ratios,

r =
a · b

c
a
c + b

c + 1

≡ ab

a + b + c
.

Lastly, we multiply by R = 1
2 c:

rR = abc

2(a + b + c) , as required.

4991. (a) Let u = sec θ + tan θ. This gives

du = sec θ tan θ + sec2 θ

=⇒ du

u
= sec θ dθ.

Enacting the substitution,∫ 1
u

du

= ln |u| + c

= ln |sec θ + tan θ| + c.

(b) Let x = sec θ, so that dx = sec θ tan θ dθ:

I =
∫ 2 sec2 θ√

sec2 θ − 1
· sec θ tan θ dθ

=⇒ 1
2 I =

∫
sec3 θ dθ.

For parts, let u = sec θ and v′ = sec2 θ, so
that u′ = sec θ tan θ and v = tan θ. The parts
formula gives

1
2 I = sec θ tan θ −

∫
sec θ tan2 θ dθ

= sec θ tan θ −
∫

sec3 θ − sec θ dθ

= sec θ tan θ − 1
2 I +

∫
sec θ dθ.

Rearranging,

I = sec θ tan θ +
∫

sec θ dθ.

Using the result of part (a),

I = sec θ tan θ + ln |sec θ + tan θ| + c

= x
√

x2 − 1 + ln
∣∣∣x +

√
x2 − 1

∣∣∣+ c.
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4992. Graphically, x2 + y2 = k is a circle. We sketch the
inequality. The first difference of two squares is

(xy + 1)(xy − 1).

The second difference of two squares is

(x2 − y2 + 2)(x2 − y2 − 2).

So, the boundary equation consists of the curves
xy ± 1 = 0, which are the standard hyperbolae
asymptotic to the axes, and

x2 − y2 ± 2 = 0.

These latter curves can be further factorised, to
give (x + y)(x − y) ± 2 = 0, which can be written

1√
2 (x + y) 1√

2 (x − y) = 1.

Now, since 1√
2 (x + y) and 1√

2 (x − y) are variables
of the same magnitude as x and y, the second two
hyperbolae are identical to the first two, except
they are asymptotic to y = ±x, rather than the
axes. This tells us that the boundary equation has
rotational symmetry order 8 around the origin.

x

y

P

Since the origin doesn’t satisfy the inequality, the
region whose points satisfy the inequality may be
reached by crossing exactly one boundary line from
the central region. These are the regions, away
from the origin, along the axes and y = ±x.
Hence, if all points on a circle x2 + y2 = k are to
satisfy the inequality, then the circle must pass
through the points of self-intersection. To find
the radius at which this occurs, we can solve e.g.
xy = 1 and x2 −y2 −2 = 0. Substituting the latter
into the former yields a biquadratic, which can be
solved using the formula. The coordinates of the
point marked P in the diagram above are(√

1 +
√

2, (
√

2 − 1)
√

1 +
√

2
)

.

The squared distance of P from O is

r2 =
(
1 +

√
2
)

+
(√

2 − 1
)2(1 +

√
2
)

=
(
1 +

√
2
)(

1 + 2 − 2
√

2 + 1
)

=
(
1 +

√
2
)(

4 − 2
√

2
)

= 2
√

2.

Therefore, if a point is on the circle x2 +y2 = 2
√

2,
it will remain entirely within regions satisfying the
inequality. So, k = 2

√
2.

4993. If hcf(a, b) = 1, then a and b share no common
factors. Consider the set

S = {ax + by : x, y ∈ Z and ax + by > 0}.

S is a set of positive integers. So, it must have a
smallest element s = ap + bq. We need to show
that s = 1. To do this, it suffices to show that s is
a divisor of both a and b. Consider division of a by
s, in the form a = ns+r, where r is a non-negative
remainder 0 ≤ r < s. We can rewrite this as

r = a − ns

= a − n(ap + bq)
≡ a(1 − np) − b(aq).

So, r is of the form ax + by, and must either be
in S or be zero. But r < s, which is minimal, so
r ̸∈ S. So, r must be zero; s is a factor of a.

The same argument tells us that s is a factor of
b. Hence, since hcf(a, b) = 1, s must be equal to
1. This gives us the result: if the highest common
factor of a, b ∈ N is 1, then there exist x, y ∈ Z
such that ax + by = 1.

4994. Consider the pair of spheres as a single object. It
has three forces acting on it: two reactions acting
radially, and the combined weight. Both reactions
pass through the centre of the both. Hence, so
must the weight, meaning that the centre of mass
of the combined object must lie directly below O,
on the intersection of the vertical and PQ. The
centre of mass, marked X below, divides PQ in
the ratio 1 : k. The relevant diagram is

O

Q

P X

The problem is now solely geometric. Rotating the
picture so that PQ lies horizontal, we have

1 k

αθ

P X Q

O

The dotted height of the triangle is

h = k + 1
2 × tan 60° =

√
3(k + 1)

2 .
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Using the right-angled triangle containing α,

tan α =
k−1

2√
3(k+1)

2

≡ k − 1√
3(k + 1)

.

We know that θ = 30° − α. So,

tan θ = tan(30° − α)

≡ tan 30° − tan α

1 + tan 30° tan α

≡

√
3

3 − k−1√
3(k+1)

1 +
√

3
3 · k−1√

3(k+1)

.

Multiplying top and bottom by
√

3(k + 1),

tan θ = k + 1 − (k − 1)√
3(k + 1) +

√
3(k − 1)

≡ 1
k
√

3
.

So, cot θ = k
√

3, as required.

4995. Sketch: y

The dotted and dashed lines above are the images
of the y axis under rotation by angles 1

2 θ and θ

respectively. By symmetry, the curves meet on
the dotted line, which has equation y = x cot 1

2 θ.
Hence, the intersections of the curves are at

x2 = x cot 1
2 θ

=⇒ x = 0, cot 1
2 θ.

The area enclosed, then, is given by

A = 2
∫ cot 1

2 θ

0
x cot 1

2 θ − x2 dx

≡ 2
[

1
2 x2 cot 1

2 θ − 1
3 x3
]cot 1

2 θ

0

≡ 2
(

1
2 cot3 1

2 θ − 1
3 cot3 1

2 θ
)

≡ 1
3 cot3 1

2 θ.

From here, a tan half-angle formula is simplest,
though double-angle formulae can also be used in
the other direction. The relevant formula is

tan 1
2 θ ≡ 1 − cos θ

sin θ
.

When reciprocated and cubed, this gives

A = 1
3 cot3 1

2 θ

≡ sin3 θ

3(1 − cos θ)3 , as required.

4996. Each xi in the tuple (x1, x2, ..., xn) can be thought
of as position on one of n perpendicular axes. The
possibility space is an n-dimensional hypercube of
side length 1, whose (hyper)volume is 1. To find
the probability, then, we need the volume of the
relevant successful region.

With n = 2, this is obvious: the possibility space
is a square, and half of it is successful:

x1

x2

For simplicity in calculation, we reflect this in the
line x1 = 1

2 , placing an acute vertex at the origin.
This gives the area, and therefore probability, as

p2 =
∫ 1

0
x1 dx1 = 1

2 .

The 3d version has a pyramid as the success space.
In that case, we can consider the pyramid as an
integral of triangular slices. The triangular slices
have area given by 1

2 x2
2, where the factor of 1

2 is p2
and x2

2 is an area scale factor. Hence,

p3 =
∫ 1

0
p2x2

2 dx2

=
[

1
3 p2x3

2

]1

0

= 1
3 p2.

The same process continues iteratively, leading to
pn = 1

n pn−1. Since p1 = 1, pn = 1
n! , as required.

4997. We set up as follows, splitting the quadrilateral
into two triangles with chord AC:

A

B

p
C

q

D

r

s

The total area H is given by

H = 1
2 pq sin B + 1

2 rs sin D.

B and D are opposite in a cyclic quadrilateral, so
sin B = sin D. Hence,

2H = (pq + rs) sin B.
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Squaring, we can rearrange to

4H2 = (pq + rs)2 − (pq + rs)2 cos2 B.

We now find an expression for cos2 B, using the
cosine rule. Calculating the squared length |AC|2
in both triangles,

p2 + q2 − 2pq cos B = r2 + s2 − 2rs cos D.

The cosines are related as cos D = − cos B, which
means we can simplify to

(pq + rs) cos B = 1
2
(
p2 + q2 − r2 − s2).

Squaring gives

(pq + rs)2 cos2 B = 1
4
(
p2 + q2 − r2 − s2)2

.

Substituting into our formula for 4H2,

16H2 = 4(pq + rs)2 −
(
p2 + q2 − r2 − s2)2

.

The rhs is a difference of two squares:[
2pq + 2rs + p2 + q2 − r2 − s2

][
2pq + 2rs − ...

]
.

This simplifies to[
(p + q)2 − (r − s)2

][
(r + s)2 − (p − q)2

]
.

Each square bracket is a difference of two squares,
so we can factorise again to get four symmetrical
factors. We can write each of them in terms of the
semiperimeter S = 1

2 (p + q + r + s), e.g.

(p + q + r − s) = 2S − 2s = 2(S − s).

The same applies to the others brackets, so we have

16H2 = 16(S − p)(S − q)(S − r)(S − s).

Dividing by 16 and taking the square root gives

H =
√

(S − p)(S − q)(S − r)(S − s).

This is Brahmagupta’s formula.

4998. set-up
The inequalities given are phrased in terms of the
variables x + y and x − y. So, we rewrite, defining

X = x + y,

Y = x − y.

The boundary equations are now

Y = X2n − 1
X = Y 2n − 1.

These are polynomial curves of even degree, at 45°
to the (x, y) axes, as shown below. The grey square
in the diagram has vertices at (±1, 0) and (0, ±1).
It has area 2.

x

y

From this point, we transfer over to (X, Y ) axes.
The relevant square now has vertices (±1, ±1). In
this coordinate system, it has area 4. The task is
to show that the relevant region in (X, Y ) space
does indeed tend towards this square:

αn

βn

X

Y

intersections
The axes intercepts are all at ±1. The equation
for intersections with Y = X is

X2n − X − 1 = 0.

From our sketch, we know that, for all n ∈ N, this
equation has exactly two roots αn, βn. We begin
with the positive root αn, which is a little over 1.
bounds on αn

The first task is to show that

αn ∈
(

1, 1 + 1
2n−1

)
.

For this, we use a sign change method. Defining
f(X) = X + 1 − X2n, we know that f(1) = 1 > 0.
Then, by the binomial expansion,

f(1 + k) = (1 + k) + 1 − (1 + k)2n

≡ 2 + k −
(
1 + 2nk + 2nC2k2 + ... + kn

)
≡ 1 − (2n − 1)k − 2nC2k2 − ... − kn.

With k positive, the terms in k are all negative.
Hence, if we set k = 1

2n−1 , then the first non-
constant term is equal to −1, making the entire
sum negative. We have our sign change. So,

α ∈
(

1, 1 + 1
2n−1

)
≡
(

1, 2n
2n−1

)
.
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area in quadrants 1, 2, 4
We can now find the limit of the following area:

X

Y

The total area shaded above is given by twice the
area of the hatched region. This we can calculate
with a single integral:

A = 2
∫ αn

0
X + 1 − X2n dX

≡ 2
[

1
2 X2 + X − 1

2n+1 X2n+1
]αn

0

≡ α2
n + 2αn − 2

2n+1 α2n+1
n .

Substituting our interval, we can put bounds on
this area. Setting αn = 1, its lower bound is clearly
3, since the last term vanishes as n → ∞. Its upper
bound, taking αn = 2n

2n−1 , is(
2n

2n−1

)2
+ 4n

2n−1 − 1
2n+1

(
2n

2n−1

)2n+1
.

In this case, the last term is of the form p(n)/q(n),
where p has order 2n + 1 and q has order 2n + 2.
Hence, in the limit, it must also vanish. Combined,
the first two terms again tend to 3. Hence, by the
squeeze theorem, the shaded area tends to 3.
area in quadrant 3
We can now address the third quadrant, and the
negative root βn. Due to the positive curvature of
polynomials of the form x2n, the relevant area is
larger than that of the following kite:

βn

(−1, −1)

X

Y

Hence, we need only show that βn → −1, as that
will send the vertex on Y = X to point (−1, −1),
and at that limit the kite is a square with area
1. So, we need to show that the negative root of
X2n − X − 1 = 0 can be set arbitrarily close to
X = −1 by a suitably large choice of n.
Let δ be small and positive. Then, we look for
a root in (−1, −1 + δ), by a sign change method.

We know f(−1) = 1 > 0, so we need to show that
f(−1 + δ) < 0. This is

(−1 + δ)2n − (−1 + δ) − 1 < 0
⇐⇒ (−1 + δ)2n < δ.

In the above, (−1+ δ) ∈ (−1, 0). Hence, for any δ,
(−1 + δ)2n can be rendered arbitrarily small by a
large enough choice of n. In particular, it can be
rendered smaller than δ, which puts the root βn

in the interval (−1, −1 + δ). Hence, βn → −1 as
n → ∞. So, the remaining area tends to 1.
conclusion
Overall, the limit in (X, Y ) space is 3 + 1 = 4.
Translating this back into (x, y) space,

lim
n→∞

An = 2, as required.

4999. approach
If (a, b) is (0, 0), the result is trivial. So, we need to
prove that a change in the position of (a, b) causes
no overall change in the shaded area. We prove
this for changes in x. The same argument then
holds for changes in y.
Consider translation of (a, b) to (a + δx, b). As
(a, b) moves, area is generated and destroyed at
the straight edges of the shaded regions, in thin
strips. Throughout the following argument, we
work in the limit δx → 0, in which those strips
are line segments. The task is to sum the various
contributions geometrically.
horizontal chord
Since we are moving horizontally, this chord does
not contribute.
vertical chord
Consider the vertical chord through point (a, b).
This has a lower section (shown solid below) and
an upper section (shown dashed). As (a, b) moves
in the positive x direction, the lower solid section
contributes positively, generating new shaded area,
while the upper section contributes negatively:

+

−

Motion of (a, b)

O

(a, b)

Now, the chord itself is symmetrical in y = 0, so
the difference between the lengths of the sections
is 2b. This is twice the length marked above. This
length can therefore be taken to encode (up to a
universal factor of 2) the rate of change of area.
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oblique chord
Consider an oblique chord. The calculation is very
similar. This time, the signs are reversed, and the
relevant direction, marked below, is oblique. It is
the vertical component of this length that encodes
the rate of change of area.

−

+

O

(a, b)

The same applies for the other oblique chord. We
can now represent the entire calculation visually.
The rate of change of area is given by the vertical
components of the line segments below, with the
vertical chord contributing positively and the two
oblique chords contributing negatively:

O

(a, b)

The geometry of rectangles tells us that positive
and negative contributions cancel exactly. So, the
rate of change of area under translation in x, and
likewise under translation in y, is zero. Hence,
since (0, 0) gives exactly half of the circle shaded,
so must every other point (a, b).

5000. circle and parabola
We begin with the circle and the parabola. Since
the centre of the circle is (−3, 0), we need to find a
normal to the parabola passing through that point.
A generic normal to the parabola is

y = − x

2a
+ a2 + 1

2 .

Substituting (−3, 0) gives

0 = 3
2a

+ a2 + 1
2

=⇒ a = −1.

So, (−1, 1) is the point on the parabola closest to
the circle. The distance to the centre is

√
5. The

radius of the circle is
√

6 − 2
√

5 =
√

5 − 1. Hence,
the distance between circle and parabola is 1.

parabola and quartic

Next, the parabola and the quartic. The parabola
has a global minimum at x = 0. Differentiating
the quartic,

dy

dx
= −16(x3 + 6x2 + 9x)

27
(
1 +

√
5
) .

The curve is stationary when

x3 + 6x2 + 9x = 0
=⇒ x(x + 3)2 = 0.

Since the derivative has a single root at x = 0 and
a double root at x = −3, the curve has a point of
inflection at

(
−3, −

√
5
)
, and a local (and therefore

global) maximum at (0, −1). Hence, the shortest
path between the quartic and the parabola must
be along the y axis. Again, the distance is 1.

circle and quartic

Lastly, we come to the circle and the quartic. A
generic normal might be doable, but would yield
brutal equations. Easier is to notice that the point
of inflection at

(
−3, −

√
5
)

is directly below the
centre of the circle at (−3, 0). Since the radius is√

5 − 1, the distance here is again 1. This looks
like the shortest path.

x

y

It remains to prove rigorously that no other point
on the quartic is closer to the circle. This means
showing that a new circle of radius

√
5 and centre

(−3, 0) only intersects the quartic at
(
−3, −

√
5
)
.

The result we are looking for is evident, although
as yet unproved, in the diagram below.
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The equation of the new circle is (x+3)2 +y2 = 5.
Again, if we brute force this, the equations look
like getting heavy: a quartic and a circle don’t
combine nicely. Instead, we use an intermediary:
a parabola, which will combine easily with each.
We can find the parabola that best approximates
the circle at x = −3 by considering the second
derivative. Using the lower half of the circle:

y = −
√

5 − (x + 3)2

=⇒ d2y

dx2 = 5
(−(x + 3)2 + 5) 3

2
.

Evaluating at x = 3 gives 1/
√

5. The intermediary
parabola has equation y = k(x + 3)2 −

√
5. Hence,

y′′ = 2k. Therefore, we require k = 1/2
√

5. So, our
intermediary parabola has equation

y = 1
2

√
5 (x + 3)2 −

√
5.

This is shown dotted below, between the solid
quartic and the dashed circle:

This parabola, by construction, stays at or below
the circle. We need to show that it stays at or
above the quartic. Solving for intersections, we
take out the double factor at the point of tangency
x = −3, giving

27
(
1 +

√
5
)( 1

2
√

5 (x + 3)2 −
√

5 + 1
)

+ 4x4 + 32x3 + 72x2 = 0
=⇒ 1

10 (x + 3)2(40x2 + 80x + 15 + 27
√

5
)

= 0.

The discriminant of the quadratic factor is

∆ = 802 − 4 · 40
(
15 + 27

√
5
)

= 4000 − 4320
√

5 < 0.

This implies that the only intersection between the
intermediary parabola and the quartic is the point
of tangency at x = −3. Hence, the shortest path
between circle and quartic is at that point.
conclusion
The three curves are equidistant. qed.

End of Volume V


